Probability midterm exam
 (Model 2)

Question (1):
(A) A card is drawn at random variable from an ordinary deck of 52 playing cards. Find the probability that it is (a) Ace (b) A jack of hearts (c) A three of club or six of diamonds (d)A hearts (e)Any suit except hearts (f)A ten or speeds (g) Neither a four nor a club?
(B)Four different mathematics books, six different physics books ,and two different chemistry books are to be arranged on a shelf.How many different arrangements are possible if (a) The books in each subject must all stand together, (b) Only the mathematics books must stand together?

Question (2):
The joint density function of two discrete random variable X and Y is given by $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{c}(2 \mathrm{x}+\mathrm{y})$, where x and y can assume all integers such that $0 \leq x \leq 2,0 \leq y \leq 3$ and $f(x, y)=0$ otherwise.
(a) Find the value of constant C .
(b) Find $P(X \geq 1, Y \leq 2)$.
(c)Find $\mathrm{P} \quad(X=2, Y=1)$.
(d) Find the marginal probability function of X.
(e) Find the marginal probability function of Y .
(f) Show that random variables X and Y are dependent.

Question (3):
If $X^{*}=(X-\mu) \backslash \delta$ is a standardized random variable ,Prove that (a) $E\left(X^{*}\right)=0$,(b) Var (X^{*}) $=1$?

